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Abstract. The Trojan-Horse method is an indirect approach to determine the low-energy astrophysical
S-factor of direct nuclear reactions by studying closely related transfer reactions with three particles
in the final state under quasi-free scattering conditions. The theoretical foundation and basic features
of this approach are presented. General considerations for the application of method and two examples
are discussed.

PACS. 24.50.+g Direct reactions – 25.70.Hi Transfer reactions

1 Introduction

Nuclear reaction rates are a basic ingredient in many as-
trophysical models that describe primordial nucleosynthe-
sis, stellar evolution, supernovae etc. [1,2,3]. They have to
be known with sufficient accuracy, e.g., in the pp chains,
CNO cycles, the s-, r-, p-, and rp-processes in order to de-
scribe quantitatively the observed abundance pattern of
the elements. In principle it is preferable to measure the
corresponding cross-sections directly in the laboratory but
this is a very difficult task [4]. The cross-sections are of-
ten very small and in many reactions unstable nuclei are
involved so that the experimental yields in direct exper-
iments are very low. In the following only non-resonant
charged-particle reactions are considered. In this case the
repulsive Coulomb interaction leads to a strong suppres-
sion of the cross-section at small effective energies that are
relevant to astrophysics. Usually the cross-section σ(E) is
measured at higher energies E and extrapolated to small
energies with the help of the astrophysical S-factor

S(E) = σ(E)E exp(2πη12) (1)

that exhibits only a weak energy dependence. The Som-
merfeld parameter η12 = Z1Z2e

2/(h̄v12) depends on the
charge numbers Z1 and Z2 of the two participating nu-
clei and their relative velocity v12 in the entrance channel
of the reaction. But even if it is possible perform mea-
surements directly at the relevant small energies in the
laboratory the experimental cross-section σexp(E) is en-
hanced as compared to the cross-section σbare(E) of the
bare nuclei due to the screening of the Coulomb poten-
tial by the electron cloud [5]. Quantitatively the electron
screening if well described by

σexp(E) = σbare(E) exp(πηUe/E) (2)
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with the electron screening potential energy Ue. Unfortu-
nately, screening potentials determined in direct experi-
ments tend to be larger than their values expected from
theoretical models. This discrepancy seems not to be fully
understood and independent information on the screen-
ing effect is highly valuable. Additionally, in astrophysical
applications the screening in the stellar plasma has to be
accounted for.

As an alternative to the direct experiments indirect
methods have been developed in recent years. They can
give complementary information on the cross-sections that
are relevant to astrophysics. The indirect approach de-
pends on the particular type of reaction. A general charac-
teristic of the indirect methods is that the astrophysically
relevant two-body reaction is replaced by a three-body re-
action at high energies. The relation of the cross-sections
is established with the help of nuclear reaction theory that
has to be well understood to give reliable information.

Well-known examples of indirect approaches are the
Coulomb dissociation method [6,7] and the method of
asymptotic normalization coefficients (ANC) [8,9] in or-
der to determine the astrophysical S-factor of radiative
capture cross-sections a(b, γ)c. In the Coulomb dissocia-
tion method the strong electromagnetic field of a highly
charged target nucleus X serves as a source of equiv-
alent photons and the photo dissociation cross-section
a(γ, c)b, the inverse of the capture reaction, can be ex-
tracted from the cross-section of the Coulomb breakup
reaction X(a, bc)X. In the ANC method the asymptotic
normalization coefficient of the ground state wave function
of nucleus c is extracted from transfer reactions. Then the
relevant matrix elements for the radiative capture reaction
can be calculated numerically.

For direct two-body reactions

A+ x −→ C + c (3)



666 The European Physical Journal A

without a photon in the final state the Trojan-Horse (TH)
method has been suggested as an alternative approach to
determine indirectly the cross-section at low energies [10].
In this case the reaction (3) is replaced by a reaction

A+ a −→ C + c+ b (4)

with three particles in the final state. The Trojan Horse
a = b + x is formed by attaching a spectator b to the
nucleus x. The reaction (4) is studied under quasi-free
scattering conditions where the momentum transfer to the
spectator is small and other reaction mechanisms are sup-
pressed. The relative energy in the system A + a can be
above or near the Coulomb barrier so that there are no
suppression of the cross-section and no electron screening.
Nevertheless, small relative energies in the system A + x
are accessible due to the particular kinematical conditions.

The validity of the TH method has been tested for var-
ious reactions by the Catania group of C. Spitaleri in re-
cent years by comparing direct and indirect results under
various kinematical conditions [11,12,13,14,15,16,17,18,
19]. Basic theoretical considerations of the approach can
be found in [20,21]. In the following the theoretical essen-
tials of the method are presented and the application is
discussed for two particular examples.

2 Theory of the Trojan-Horse method

The relation of the cross-sections for the two-body re-
action (3) and the three-body reaction (4) is found by
applying standard methods of direct-reaction theory. De-
noting the system C + c with B, the triple differential
cross-section of reaction (4)

d3σ

dECc dΩCc dΩBb

=
µAaµBbµCc

(2π)5h̄6

kBbkCc

kAa

×
1

2Ji + 1

∑

Mi,Mf

|Tfi|
2

(5)

is determined by the T -matrix element Tfi that contains
all the relevant information. Here, reduced masses and
wave numbers of system ij are denoted by µij and kij ,
respectively. In the post-form distorted-wave Born approx-
imation (DWBA) the T -matrix element is given by

Tfi =
〈

χ
(−)
Bb φBφb

∣

∣Vxb

∣

∣χ
(+)
Aa φAφa

〉

(6)

with distorted waves χ
(+)
Aa , χ

(−)
Bb and bound state wave

functions φA, φa, φb as in the case of usual transfer reac-
tions. The wave function φB , however, is a complete scat-

tering wave function Ψ
(−)
Cc that contains the information

on the two-body reaction. The potential Vxb is responsible
for the binding of the nucleus x and the spectator b in the
Trojan Horse a.

In the Trojan-Horse approach the full scattering wave

function Ψ
(−)
Cc is replaced by its asymptotic form for radii

r larger than a strong absorption radius R. This so-called

surface approximation is the essential approximation of
the TH method. It is well justified since there is a strong
suppression of the wave functions at smaller radii due to
the absorptive part of the optical potentials in the en-
trance and exit channels of the three-body reaction. As a
consequence of the surface approximation, the T -matrix
element

TTH
fi =

1

2ikCc

√

vCc

vAx

(7)

×
∑

l

(2l + 1)
[

Sl
AxCcU

(+)
l − δ(Ax)(Cc)U

(−)
l

]

assumes a form similar to a scattering amplitude of a two-
body reaction with the S-matrix elements Sl

AxCc of the
reaction

C + c −→ A+ x, (8)

i.e. the inverse of the astrophysical important reaction (3).
For simplification we assumed spinless nuclei in equa-
tion (7). The main difference, however, is the appearance

of the factors U
(±)
l (kBbkCckAa) that in general are com-

plicated reduced DWBA matrix elements. Their particu-
lar momentum dependence cancels the suppression of the
S-matrix element

Sl
AxCc ∝ exp(−πηAx) (9)

at low energies EAx = h̄2k2
Ax/(2µAx) due to the Coulomb

interaction between A and x.
In order to find a simple physical interpretation further

approximations can be applied that are, however, not nec-
essary in the general approach. They only serve to show
the features of the TH method more clearly. Using plane

waves for the distorted waves χ
(+)
Aa and χ

(−)
Bb the cross-

section (5) factorizes according to

d3σ

dECc dΩCc dΩBb

= KF |W (QBb)|
2 dσTH

dΩ
(10)

with three contributions similar as in a plane-wave impulse
approximation. The kinematic factor KF is proportional
to k−3

Ax at small energies EAx. The momentum amplitude
W (QBb) is the Fourier transform of Vxbφa with respect to
the relative coordination rxb. The argument

QBb = kBb −
mb

mb +mx

kAa (11)

corresponds to the momentum transfer to the spectator b.
The TH cross-section

dσTH

dΩ
= P

dσ

dΩ
(12)

contains the usual cross-section dσ/dΩ of the two-body
reaction (8) and a penetrability factor

P ∝ k3
Ax exp(2πηAx). (13)

Collecting the kAx-dependent factors one immediately
sees that the product KF dσTH/dΩ is proportional to the
astrophysical S-factor for EAx → 0. It approaches a finite
value in this limit. There is no suppression of the cross-
section (10) due to the Coulomb barrier in the system Ax.
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3 Application

In order to apply the Trojan-Horse method to a particular
reaction (3) one has to select a Trojan Horse a = b +
x with a well-known ground state wave function that is
highly clustered so that the momentum amplitude W for
the breakup of a into b and c is well determined. Typical
examples are the deuteron 2H = n + p and 6Li = α + d
that allow to study the transfer of nuclei that are the
most relevant for nuclear astrophysics. The spectator b
is usually not observed in the TH experiment since the
complete kinematic information can be deduced from the
momenta of the nuclei C and c that are detected in the
final state and the known beam energy.

The width of the momentum distribution |W |2 is re-
lated to the Fermi motion of the transferred particle x and
the spectator b inside a with binding energy εa > 0. The
condition QBb = 0 defines the so-called quasi-free energy

Eqf
Ax = EAa

(

1−
µAaµ

2
bx

µBbm2
x

)

− εa (14)

in the Ax system. This relation is a purely kinematical
consequence. The quasi-free energy (14) is much smaller
than the relative energy EAa in the initial state of the
three-body reaction (4) and easily falls into a range of en-
ergies of the two-body reaction (3) that are relevant for nu-
clear astrophysics. In an actual experiment a cutoff in the
momentum transfer QBb is chosen to emphasize the quasi-
free reaction mechanism corresponding to the peak of the
momentum distribution. This cutoff determines the range

of accessible energies EAx around Eqf
Ax. Depending on the

scattering angle in the two-body reaction (3) the quasi-
free condition defines a pair of quasi-free angles where the
particles C and c are detected in the laboratory.

Considering the approximations in the theoretical
calculation one cannot expect that the absolute cross-
section (10) is well determined quantitatively. However,
the energy dependence is expected to be well reproduced.
Therefore, the S-factor extracted in the TH method has
to be normalized to known direct data at higher energies.
In contrast to direct experiments, the main features of the
TH method are that there are no electron screening and
no suppression of the cross-section at small energies. It
remains finite even in the limit EAx → 0.

4 Examples

In order to check the validity of the Trojan-Horse method
several reactions with stable nuclei under various condi-
tions can be studied. E.g., astrophysical S-factors are ex-
tracted in the TH method and compared to well-known
data from direct experiments. Alternatively, cross-sections
from TH experiments are compared with simulated cross-
sections using information of direct experiments. Here we
discuss examples of both approaches.

The cross-section of the reaction 2H(6Li, α)4He that
is astrophysically relevant for the destruction of 6Li in
the Big Bang has been measured to very low energies in
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Fig. 1. Astrophysical S-factor S(E) for the reaction
2H(6Li, α)4He from a direct experiment [22] (open circles) and
from the TH method (filled circles).

a direct experiment with a deuterium gas target and a
6Li beam [22]. The cross-section is dominated by a non-
resonant process with a s wave in the initial state. Extrap-
olating the experimental data (open circles in Figure 1) at
higher energies with a polynomial fit to small energies a
S-factor of S(0) = 17.4MeVb at zero energy has been ex-
tracted. From a comparison with the enhanced experimen-
tal data at very small energies below 100 keV an electron
screening potential of Ue = 330(120) eV was deduced.

In a corresponding Trojan-Horse experiment using the
reaction 6Li(6Li, αα)4He the nucleus 6Li has been cho-
sen as the Trojan horse with an α particle as the spec-
tator [17,18]. With a beam energy of 6MeV a quasifree
energy Eqf = 25 keV could be reached for the two-body
reaction. Due to the symmetry of the TH reaction both
the projectile and the target were used as Trojan Horses.
The S-factor was extracted from the experimental data
with a cutoff of 35MeV/c in the momentum distribution.
Absolute values were derived by normalizing to the direct
data for energies above 600 keV (see fig. 1). A polynomial
fit to the indirect data yields a S-factor at zero energy
of S(0) = 16.9(0.5)MeVb consistent with the direct ex-
periment. Comparing the S-factor from the TH experi-
ment with the direct data an electron screening potential
of Ue = 320(50) eV was determined, supporting the value
extracted from the direct experiment alone. Both values
are substantially larger than the adiabatic limit of 186 eV
expected from theory.

Differential cross-sections of the reaction 6Li(p, α)3He
for a large range of energies were measured in a direct ex-
periment [23]. From them the coefficient Bl in the angular
expansion of the cross-section

dσ

dΩ
=
∑

l

BlPl(cos θ) (15)

with Legendre polynomials Pl were extracted. The coeffi-
cients Bl are well described in a R-matrix fit (see fig. 2).
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Fig. 2. Coefficients Bl in the expansion (15) as a function
of the proton energy Ep for the reaction 6Li(p, α)3He in an
R-matrix fit to experimental data [23].
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Fig. 3. Cross-sections of the Trojan-Horse reaction
2H(6Li, α3He)n ([19] and preliminary data) compared with a
simulation using S-matrix elements from a R-matrix fit to di-
rect data.

There are both nonresonant s-wave and resonant p-wave
contributions. The S-matrix elements derived from the
R-matrix fit were then used in the simulation of Trojan-
Horse experiments.

Choosing the deuteron as the Trojan Horse, experi-
ments with the reaction 2H(6Li, α3He)n were performed
with the neutron as the spectator [19]. Energies of
13.9MeV and 25MeV for the 6Li beam were selected that
correspond to quasi-free energies Eqf of −0.24MeV and
1.35MeV, respectively. The experimental cross-sections as
a function of the relative energy in the 6Li+ p system are
compared in fig. 3 with the simulation applying a cutoff of

30MeV/c in the momentum transfer to the spectator. The
drop of the cross-section above 1.5MeV and 1.0MeV, re-
spectively, is a consequence of this momentum cutoff. The
overall shape of the cross-sections is well reproduced by
the simulation, however, small discrepancies remain that
have to be investigated in more detail.

5 Summary and outlook

The Trojan-Horse method allows to extract the energy-
dependence of the astrophysical S-factor of a direct two-
body reaction from the measurement of a related transfer
reaction under quasi-free scattering conditions. The rela-
tion of the cross-sections is found by applying a distorted-
wave Born approximation with the surface approximation
that is essential for the method. A characteristic feature
of this indirect approach is that the cross-section at low
energies is not suppressed due to the Coulomb barrier in
the two-body system. Additionally, there is no electron
screening and information on the electron screening po-
tential can be extracted by comparing to data of direct
measurements. First applications of the method to well-
studied two-body reactions with simple theoretical ap-
proximations were quite successful so far, however, further
experimental tests are necessary to establish the validity of
the method. The full theory has not been applied yet and
more elaborate calculations are required. A comparison of
different approximations will give additional information
on the accuracy and applicability of the method.
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